Amperometric inhibitive biosensor based on horseradish peroxidase-nanoporous gold for sulfide determination
نویسندگان
چکیده
As a well-known toxic pollutant, sulfide is harmful to human health. In this study, a simple and sensitive amperometric inhibitive biosensor was developed for the determination of sulfide in the environment. By immobilizing nanoporous gold (NPG) on glassy carbon electrode (GCE), and encapsulating horseradish peroxidase (HRP) onto NPG, a HRP/NPG/GCE bioelectrode for sulfide detection was successfully constructed based on the inhibition of sulfide on HRP activity with o-Phenylenediamine (OPD) as a substrate. The resulted HRP/NPG/GCE bioelectrode achieved a wide linear range of 0.1-40 μM in sulfide detection with a high sensitivity of 1720 μA mM(-1) cm(-2) and a low detection limit of 0.027 μM. Additionally, the inhibition of sulfide on HRP is competitive inhibition with OPD as a substrate by Michaelis-Menten analysis. Notably, the recovery of HRP activity was quickly achieved by washing the HRP/NPG/GCE bioelectrode using differential pulse voltammetry (DPV) technique in deaerated PBS (50 mM, pH 7.0) for only 60 s. Furthermore, the real sample analysis of sulfide by the HRP/NPG/GCE bioelectrode was achieved. Based on above results, the HRP/NPG/GCE bioelectrode could be a better choice for the real determination of sulfide compared to inhibitive biosensors previously reported.
منابع مشابه
An Amperometric Biosensor Utilizing a Ferrocene-Mediated Horseradish Peroxidase Reaction for the Determination of Capsaicin (Chili Hotness)
Chili hotness is very much dependent on the concentration of capsaicin present in the chili fruit. A new biosensor based on a horseradish peroxidase enzyme-capsaicin reaction mediated by ferrocene has been successfully developed for the amperometric determination of chili hotness. The amperometric biosensor is fabricated based on a single-step immobilization of both ferrocene and horseradish pe...
متن کاملBiosensor for detection of selective anticancer drug gemcitabine based on polyaniline-gold nanocomposite
Electrochemical biosensor is an effective tool for pharmaceutical analysis due to its simplicity, specificity, sensitivity, fast, costeffective and repetitive measurements with miniaturized and portable devices. The paper illustrates the detail methodology for development of an amperometric biosensor based on polyaniline-gold nanocomposite film modified horseradish peroxidase for anticancer dru...
متن کاملMethylamine-Sensitive Amperometric Biosensor Based on (His)6-Tagged Hansenula polymorpha Methylamine Oxidase Immobilized on the Gold Nanoparticles
A novel methylamine-selective amperometric bienzyme biosensor based on recombinant primary amine oxidase isolated from the recombinant yeast strain Saccharomyces cerevisiae and commercial horseradish peroxidase is described. Two amine oxidase preparations were used: free enzyme (AMO) and covalently immobilized on the surface of gold nanoparticles (AMO-nAu). Some bioanalytical parameters (sensit...
متن کاملA H2O2 Biosensor Based on Immobilization of Horseradish Peroxidase in a Gelatine Network Matrix
A simple and promising H2O2 biosensor has been developed by successful entrapment of horseradish peroxidase (HRP) in a gelatine matrix which was cross-linked with formaldehyde. The large microscopic surface area and porous morphology of the gelatine matrix lead to high enzyme loading and the enzyme entrapped in this matrix can retain its bioactivity. This biosensor exhibited a fast amperometric...
متن کاملAn amperometric horseradish peroxidase inhibition biosensor for the determination of phenylhydrazine.
An amperometric horseradish peroxidase (HRP) inhibition biosensor has been substantially constructed by the help of N,N-dicyclohexylcarbodiimide (DCC), N-hydroxysuccinimide (NHS). The preparation steps and the biosensor response to phenylhydrazine were monitored by electrochemical impedance spectroscopy (EIS), cyclic voltammetry, and chronoamperometry. The proposed biosensor could be applied to...
متن کامل